
 

 

 

 

 4/6/2011  

 
 

Progeny 
Final Report 

   

  

Shawn Josey 
Chad Levesque 
Robert Lockyer 
Andrew Carter 



  Progeny – Final Report 

ii 

 

 

Executive Summary 

Game development in the past few years has seen an explosion in the size of virtual worlds 

and an explosion in the complexity of characters and other graphical assets. The amount of 

information required to represent a virtual environment is growing at an astounding rate 

and so are the requirements for dealing with this level of detail. Video games budgets have 

ballooned and install sizes have grown rapidly. All this is happening at a time when digital 

distribution and mobile computing are becoming increasingly popular. 

Project Progeny aims to demonstrate how procedural methods can be used in order to 

combat these developing trends, while still enabling gaming companies to deliver vast, 

highly detailed game worlds. 

Progeny demonstrates these capabilities by generating fully scalable planets which users 

can rotate at an orbital level, and explore in a free look mode. This sort of scale would be 

very difficult to accomplish with traditional methods. For large galaxies of these planets it 

would be completely infeasible. 

Two key features of the project are the use of an algorithm for generating a renderable 

subset of the available surface data, and a procedural technique for generating this surface 

data for the planet. 

In order to generate the surface data procedurally Progeny makes use of a coherent noise 

library “libnoise”. Coherent noise has the properties of being deterministic, continuous and 

computable in n dimensions. Coherence allows us to use it to generate smooth planet like 

topologies which are reproducible using a few simple input parameters. The fact that it can 

be sampled in at least three dimensions means that it is capable of being used to generate 

topologies which do not have to be wrapped. Thus, distortion and seams are avoided 

altogether. 

Progeny makes use of an algorithm called Real-time Optimally Adapting Meshes (ROAM) 

for sampling the noise function and generating a manageable set of triangles which are 



  Progeny – Final Report 

iii 

 

 

rendered to the screen to generate a scene that is optimized for visual fidelity and 

performance. The algorithm tries to distribute triangles in a way that best represents the 

underlying noise data as a continuous surface. Flat areas require very few triangles to 

represent accurately, while more turbulent areas require dense meshes. 

 

By implementing the design described in this report we have created a reusable procedural 

content generation library. This library is capable of randomly generating large scale 

planets with fine grained details. It also enables users with no prior knowledge to easily 

generate complex planetary geographies with adjustable attributes. These capabilities 

demonstrate the power of procedural generation, since it would take highly skilled artists a 

significant amount of time to generate planets at similar levels of detail using traditional 

methods.  



  Progeny – Final Report 

iv 

 

 

Table of Figures 

Figure 1: Procedurally generated Earth-like planets (Eve Online: Tyrannis) [MANN2010] .. 2 

Figure 2: Left: Output of a one-dimensional non-coherent noise function. Right: Output of a 

one-dimensional smoothed coherent noise function. [LIB2007] ...................................................... 4 

Figure 3: First six levels of triangle splitting [DUCH1997] ................................................................... 6 

Figure 4: Project Dependency Layout ........................................................................................................... 7 

Figure 5: Progeny Interfaces, and their implementations in ProgenyDemo ................................. 8 

Figure 6: A planet is associated with a color scheme and a terrain generator. ......................... 10 

Figure 7: The terrain and colors of the planet are accessed through a planet strategy, given 

to the planet instance at construction. ...................................................................................................... 11 

Figure 8: diagram of the class structure supporting Progeny’s ROAM implementation. ...... 12 

Figure 9: The surface of a triangle mesh as two neighboring triangles are split and merged.

 ................................................................................................................................................................................... 13 

Figure 10: A ROAM-split surface and the same surface viewed by a virtual third person 

camera. ................................................................................................................................................................... 14 

Figure 11: Noise / Planet Relationship ...................................................................................................... 16 

Figure 12: Class Diagram - How Progeny Modules implement libnoise Module Interface ... 17 

Figure 13: Voronoi Cells, Clamped Cells, Inverted Clamped Edges, Finished Craters ............ 18 

Figure 14: Turbulent Craters ......................................................................................................................... 18 

Figure 15: Perlin Noise, Ridged Multi-fractals ........................................................................................ 19 

Figure 16: Progeny Controls .......................................................................................................................... 20 

Figure 17: Progeny Xbox Controls ............................................................................................................... 21 

Figure 18: Notification Pop-up ..................................................................................................................... 21 

Figure 19: Information Bar ............................................................................................................................ 22 

Figure 20: Customization Menu ................................................................................................................... 23 

Figure 21: Simplified Camera System Class Diagram .......................................................................... 24 

Figure 22: Sprint Breakdown ........................................................................................................................ 26 

  



  Progeny – Final Report 

v 

 

 

Contents 

Executive Summary.............................................................................................................................................. ii 

Table of Figures .................................................................................................................................................... iv 

1.0 Introduction ..................................................................................................................................................... 1 

1.1 Summary and Project Concept ............................................................................................................ 1 

1.1.1 Procedural Generation Background ........................................................................................... 1 

1.1.2 Project Concept ................................................................................................................................... 3 

1.1.3 The Project Epic .................................................................................................................................. 3 

1.2 Technical Background and Research ................................................................................................ 4 

1.2.1 Coherent Noise .................................................................................................................................... 4 

1.2.2 Level of Detail ...................................................................................................................................... 5 

1.2.3 Real-time Optimally Adapting Meshes (ROAM) ..................................................................... 5 

2.0 Technical Design ............................................................................................................................................ 6 

2.1 System Overview ....................................................................................................................................... 6 

2.1.1 Progeny .................................................................................................................................................. 7 

2.1.2 ProgenyDemo ...................................................................................................................................... 7 

2.1.3 Horizon ................................................................................................................................................... 8 

2.1.4 libnoise ................................................................................................................................................... 8 

2.2 Progeny Technical Design ..................................................................................................................... 8 

2.2.1 Portability ............................................................................................................................................. 8 

2.2.2 Extensibility.......................................................................................................................................... 9 

3.0 Implementation Details ............................................................................................................................ 10 



  Progeny – Final Report 

vi 

 

 

3.1 Progeny ...................................................................................................................................................... 10 

3.1.1 Progeny Class Descriptions ......................................................................................................... 10 

3.1.2 Continuous Level of Detail - ROAM .......................................................................................... 12 

3.2 Progeny Demo ......................................................................................................................................... 19 

3.2.1 User Interface ................................................................................................................................... 19 

3.2.2 Controls ............................................................................................................................................... 19 

3.2.3 Notifications and overlays ........................................................................................................... 21 

3.2.4 Customizing planets ....................................................................................................................... 22 

3.2.5 Camera System ................................................................................................................................. 23 

4.0 Final Project Schedule ............................................................................................................................... 25 

4.1 Scrum .......................................................................................................................................................... 25 

4.1.1 Term Three - Ceres Release ........................................................................................................ 26 

4.2 Project Management Post Mortem .................................................................................................. 29 

4.2.1 How the Scrum approach has evolved .................................................................................... 30 

4.3 Success and Challenges ........................................................................................................................ 31 

5.0 Project Budget and Resources ............................................................................................................... 33 

6.0 Moving Forward .......................................................................................................................................... 34 

7.0 Conclusion ..................................................................................................................................................... 35 

Glossary ................................................................................................................................................................. 37 

References ............................................................................................................................................................ 38 

 



  Progeny – Final Report 

1 

 

1.0 Introduction 

1.1 Summary and Project Concept 

1.1.1 Procedural Generation Background 

Often in digital 3D mediums, such as video games, art assets are created manually by a 3D 

modeler and a texture artist. Although these methods provide a great deal of control over 

the artwork, that control comes at a substantial human resource cost. Art assets are also 

the primary factor affecting the distribution size of games. This is a growing concern in 

areas such as mobile gaming markets and digitally distributed content. Depending on the 

scale of the game, manual creation of content could be practically impossible. For instance, 

the game world could be an entire galaxy where any star system could be visited by the 

player. 

Procedural generation is the algorithmic creation of such assets as opposed to manual pre-

generation. It allows the user of the algorithms to dynamically create content that meets 

given criteria in geometry and appearance. This allows for games to be smaller in 

distribution size by generating areas of the game world as they’re needed (e.g. based on the 

player’s actions and exploration patterns.) 

Procedural art generation was first used in early computer games as a way of including 

vast amounts of art assets in a small executable. Storage space and small memory limits of 

early computing platforms were major limiting factors in early game design. The video 

game Elite included procedural planet generation. It generated a large universe from a 

single seed value. This universe contained 8 galaxies including 256 stars each, though the 

creators claimed the engine to be entirely capable of generating 2^48 galaxies [SPUF2003]. 

That sort of scale would be impossible to achieve in a game where art assets were designed 

one by one, as in traditional games. 

 



  Progeny – Final Report 

2 

 

 
Figure 1: Procedurally generated Earth-like planets (Eve Online: Tyrannis) [MANN2010] 

Recently, a new wave of games has tried to extend the concept of Elite using modern 

computers and techniques. The massively multiplayer game Eve Online previously made all 

planets in their game universe by hand, but recently started using procedural generation in 

order to make a vast number of highly detailed plants [MANN2010]. Figure 1 shows how 

different inputs can create different planets that all have a very convincing and realistic 

appearance. Yet Another Space Shooter (YASS) by Matthias Dandorff [DAND2008] uses 

procedural generation to dynamically construct planets and surface textures as needed and 

present the player with a seamless solar system. 

 



  Progeny – Final Report 

3 

 

1.1.2 Project Concept 
Progeny is designed as a reusable framework for the procedural generation of objects and 

textures. Its primary focus is on the generation of scalable planetary bodies for real-time 

rendering systems. To define the scope of the project, an epic was written to illustrate what 

is desired for the end of project demonstration. 

1.1.3 The Project Epic 

The demonstration station has a computer running Source Studio's game engine, Horizon. 

Without user interaction, the system continues to generate and display a planet with 

random values for size, terrain variation, and class (terrain, desert, lunar, etc.) An on-

screen tip also prompts the user to press a key to open the object creation menu. 

An intrigued person walks up to the computer and presses a key to open the menu. He or 

she is presented with a menu to customize the planet parameters. The user can adjust 

several sliders controlling the values such as ocean height, continent frequency, mountain 

frequency and planet radius. 

After the user customizes the options as desired, he or she clicks generate. This closes the 

menu and a randomly generated planet matching the given values is presented. The camera 

is looking at the planet from an orbital height. 

To inspect the planet, the user can use the keyboard or mouse controls to navigate the 

orbital camera. This camera can be spun around the planet or zoomed with a smooth 

inertial movement. As the user zooms in or out, the geometry and textures of the planet 

adapt to the appropriate level of detail and the scene maintains a frame rate of at least 30 

frames per second. Additionally, the user can press a key to switch to a free look camera for 

flying over the planet surface. 

The user can seamlessly navigate from surface level to extra-orbital heights and back again 

to any area on the planet’s surface. The surface itself is colored at least according to terrain 

elevation. 



  Progeny – Final Report 

4 

 

1.2 Technical Background and Research 

1.2.1 Coherent Noise 

To generate a randomly varying procedural height map, an irregular primitive function is 

needed [EBRT2002]. These primitive functions are often called noise functions. White 

noise, for example, provides random numbers independent of frequency. However, a white 

noise function is non-deterministic, i.e. it will not produce the same results for a given set 

of inputs. If used in terrain generation, a planet’s appearance could vary greatly from frame 

to frame, or even with camera position. Clearly something more consistent is desired. 

To create a cohesive scene in a real-time graphics system, we need a coherent noise 

function that meets the following requirements [LIB2007]: 

 Passing in the same input value will always return the same output value. 

 A small change in the input value will produce a small change in the output value. 

 A large change in the input value will produce a random change in the output value. 

An illustration of a function that fulfills these requirements is compared with white noise 

below in Figure 2. 

  

Figure 2: Left: Output of a one-dimensional non-coherent noise function. Right: Output of a one-dimensional 
smoothed coherent noise function. [LIB2007] 

libnoise [LIB2007] is a portable C++ library capable of generating various types of coherent 

noise such as Perlin noise and ridged multi-fractal. These noise functions are often used in 



  Progeny – Final Report 

5 

 

procedural generation algorithms to create and texture planetary terrain. It was also found 

that others succeeded in using libnoise for similar applications [DAVX2009]. 

The libnoise website also contains several tutorials describing methods of using libnoise to 

create height maps for planar and spherical surfaces. Consequently, libnoise was chosen as 

the foundation for Progeny’s procedural core. 

1.2.2 Level of Detail 

Progeny is intended to be used in real-time applications such as interactive video games. As 

an entire planet is naturally composed of a very large data set of geometry and textures, it 

is prohibitive to store all potentially required data in memory, or to render the object at its 

maximum sampling frequency and maintain an acceptable frame rate. 

It is evident that a dynamic level of detail system is required to realize the project epic 

wherein the user can seamlessly zoom from orbital distances to any area on the planet’s 

surface. 

1.2.3 Real-time Optimally Adapting Meshes (ROAM) 

In 1997, Mark Duchaineau et al. at the Los Alamos National Laboratory and the Lawrence 

Livermore National Laboratory published an algorithm they developed for terrain 

visualization entitled Real-time Optimally Adapting Meshes, or ROAM [DUCH1997]. 

ROAM is an algorithm for constructing flexible triangle meshes to render high frequency 

elevation maps with controllable error bounds at high frame rates. The algorithm uses dual 

priority queues to manage split (see Figure 3 for illustration of split levels) and merge 

operations that execute on triangles stored in a binary tree. After the mesh is updated, the 

renderer is called to draw the leaf nodes of the binary tree, representing the smallest 

triangles needed to adequately represent the elevation map in a given area. 



  Progeny – Final Report 

6 

 

 
Figure 3: First six levels of triangle splitting [DUCH1997] 

This allows the application to represent the scene at a constant number of triangles 

independent of frame content and camera position.  

ROAM has been empirically proven to provide an effective solution to the problem of 

terrain level of detail and much additional literature can be found on the subject [BTR2000, 

ONEIL2001, POM2000]. 

2.0 Technical Design 

2.1 System Overview 

Project Progeny was designed as the combination of two main components. The first 

component named “Progeny,” acts as the core library and is made independent of any 

specific graphics library. The second component, named “ProgenyDemo,” acts as an 

example of how the Progeny library could be used in an existing game engine.  



  Progeny – Final Report 

7 

 

 

Figure 4: Project Dependency Layout 

 

Progeny has been designed to be easily integrated into the pipeline of an existing game, 

providing it with a simple interface for procedurally generating complex worlds. Illustrated 

in Figure 4 are the four main modules contained in the project. Careful consideration has 

been given to how these modules interact with each other. 

2.1.1 Progeny 

The Progeny core module is designed to be completely abstracted from any specific 

rendering system. It is implemented as a C++ library for concerns of speed and fine grained 

resource control. It uses the free and open-source libnoise project for coherent noise 

generation. 

2.1.2 ProgenyDemo 

ProgenyDemo acts as an example of how Progeny could be integrated into a game engine. It 

uses Source Studio’s Horizon engine to render Progeny’s outputs in an interactive way. 

This is the project that builds an executable application; all other modules generate library 

files. Additionally, ProgenyDemo provides the user with a menu to adjust various planet 

parameters (such as radius, color, and terrain features), and then explore it using an orbital 

or free-look camera. 



  Progeny – Final Report 

8 

 

2.1.3 Horizon 

Horizon is Source Studio’s proprietary game engine; it should have no dependence upon 

any of the modules created for the project. It currently uses DirectX to provide 3D 

rendering, but this is abstracted through its own graphics layer, and it is planned that it will 

eventually offer OpenGL support as well. 

2.1.4 libnoise 

libnoise is an open source library used directly by Progeny, but abstracted away from other 

modules such as ProgenyDemo. This allows for changes in the noise implementation 

without cascading those changes to Progeny’s clients. 

2.2 Progeny Technical Design 

2.2.1 Portability 

To facilitate the integration of Progeny with a client’s graphics system, two key interface 

classes are provided: IPgRenderer and IPgCamera. These are implemented in 

ProgenyDemo as illustrated below in Figure 5. 

 

Figure 5: Progeny Interfaces, and their implementations in ProgenyDemo 



  Progeny – Final Report 

9 

 

IPgRenderer contracts a render function with parameters for a pointer to an array of 

vertex indices, PgVertex objects, and the number of triangles to be drawn in the current 

frame. This method of rendering, known as immediate mode, is commonly used in graphics 

applications for geometry that changes frequently (such as our ROAM planetary surface.) 

As immediate mode rendering is common to many popular graphics systems, this 

abstraction layer should allow for easy integration while keeping Progeny independent of 

any one system. 

IPgCamera is another small interface class that needs to be implemented by the client 

application. This allows the ROAM implementation to query the camera state and maintain 

an optimal mesh without having to maintain its own camera state. It contracts functions for 

getting the camera coordinates (in world Cartesian space) and the camera heading (as a 

normalized directional vector in the same space.) 

2.2.2 Extensibility 

Progeny has been designed with extensibility in mind by allowing the client application to 

supply custom procedural algorithms or static data to drive surface generation. 

An implementation of the IPgPlanetStrategy interface class is given to the 

PgROAMPlanet through its constructor. This association allows the planet to position and 

color its vertices by querying positions on a unit sphere. Although Progeny supplies a 

robust and highly customizable terrain generation strategy capable of creating an 

incredible variety of terrestrial type planet surfaces, the use of this interface allows the 

user of the library to provide his or her own terrain algorithms (that may or may not be 

procedural or random.) 



  Progeny – Final Report 

10 

 

 

Figure 6: A planet is associated with a color scheme and a terrain generator.  

The provided planet strategy, PgPlanetStrategyRandom, also takes PgColorScheme 

objects at instantiation. While a selection of color schemes based on the colors of the 

planets in our solar system are provided, the user is free to implement their own to be used 

by the planet in assigning colors to vertices as they are created. Figure 6 illustrates an 

abstracted design of a planet’s dependency on a color scheme and a terrain generator. 

3.0 Implementation Details 

3.1 Progeny 

3.1.1 Progeny Class Descriptions 

The core class of the Progeny module is PgROAMPlanet. This class is instantiated by the 

client application and passed an object implementing IPgPlanetStrategy. While this 

interface can be implemented by some custom class, Progeny provides a robust 

implementation called PgPlanetStrategyRandom. 



  Progeny – Final Report 

11 

 

 

Figure 7: The terrain and colors of the planet are accessed through a planet strategy, given to the planet instance 
at construction.  

PgPlanetStrategyRandom implements a terrain generator by combining libnoise 

modules (see details below under Terrain Generation). We set the parameters for terrain 

generation by passing in a PgPlanetAttributes structure which holds values for seed, 

radius, ocean height, mountain frequency, continent frequency, noise amplitude, and crater 

state. As our terrain generator modules are deterministic, this allows us to recreate a 

desired planet simply by storing these values and recreating the PgPlanetAttributes 

object in a later session. This enables artists and game developers a level of manual control 

over their planet construction while still maintaining a very small size with regards to 

game distribution. 

 

Additionally, we provide a PgColorScheme that defines the colors of the terrain as 

specified by normalized elevations (with 0.0 being planetary minimum and 1.0 being 

planetary maximum.) We can also define a polar region in the PgColorScheme that 

allows us to blend in a color towards the polar zones. This is useful for creating icy polar 

caps in Earth-scheme planets, as well as a subtle striping effect in other color schemes. 



  Progeny – Final Report 

12 

 

3.1.2 Continuous Level of Detail - ROAM 

 Algorithm Architecture 

Progeny makes use of an algorithm called Real-time Optimally Adapting Meshes, or ROAM, 

to provide a camera-optimized triangle mesh each frame. This algorithm was proposed by 

Mark Duchineau et al. to tackle the problem of rendering very large surfaces with high 

frequency data at an efficient, real-time rate. 

 

Figure 8: diagram of the class structure supporting Progeny’s ROAM implementation. 

Figure 8Figure 6 illustrates the design of the object hierarchy within the Progeny library. 

 The central class, PgROAMPlanet, uses an implementation of the ROAM algorithm in 

combination with a given IPgPlanetStrategy to create a planetary surface. 

Each planet is initialized as a cube, made of eight vertices and twelve triangles. Prior to 

rendering each frame, the client application (e.g. ProgenyDemo) calls update on the 

PgROAMPlanet through the IPgRenderable interface. This method takes an 

IPgCamera as an argument. 

 



  Progeny – Final Report 

13 

 

Triangle Splitting 

Within the update method, the PgROAMPlanet will first iterate through all its associated 

PgTriangle objects (stored in a linked list), and get the priority value of each. This 

priority value is a function of camera position, camera heading, and error offset. 

 

Figure 9: The surface of a triangle mesh as two neighboring triangles are split and merged. 

The error offset is the distance between where the midpoint of the long edge of the triangle 

currently is, and where a vertex would be positioned if this edge were split in two and a 

new vertex were placed according to a query of the planet’s IPgPlanetStrategy. As an 

optimization, the planet also calculates the approximate distance to the planet’s horizon, 

and passes this as an argument to each triangle’s getPriority function. 

If the triangle determines that it is further from the camera than the horizon, its priority 

value is immediately returned as 0. Similarly, the dot product between a directional vector 

from the camera to the triangle’s midpoint, and the camera’s heading is calculated. This is 

used to determine whether the midpoint is actually in the view frustum. This allows the 

priority function to quickly simplify the geometry to the sides and behind the camera when 

it is zoomed in to a low altitude. Otherwise, we must calculate the triangle’s actual positive 

priority value. This is done as a simple sum of the squares of the distance from the camera 



  Progeny – Final Report 

14 

 

to the midpoint, and of the error offset (a sum of squares is used simply because a square 

root operation costs quite a few more CPU cycles than a multiplication.)  

 

Figure 10: A ROAM-split surface and the same surface viewed by a virtual third person camera. 

Each triangle that is determined to be of a given tolerance value for this frame (passed to 

the planet through the update call) is split. Additionally, we can only split a triangle if its 

neighbor (the triangle along its longest edge) is also split. This is to avoid surface 

irregularities and visible seams in the triangle mesh. The split operation itself creates a 

new vertex by pulling one from the pool of pre-allocated vertices, as managed by 



  Progeny – Final Report 

15 

 

PgVertexArray. This new vertex is pushed or pulled out from the planet’s base radius by 

the error offset. The split method then manipulates the edges of the given triangle and its 

neighbor to turn them from two larger triangles into four small triangles. These four 

triangles are stored in a new PgDiamond object (with the original two triangles being 

specified as parent triangles, and the two new ones as child triangles), which itself is added 

to a linked list held by the planet. 

Diamond Merging 

The other half of the update step is merging. The planet iterates through the mentioned list 

of diamonds, and calculates the priority value for each. This is calculated identically to how 

it is calculated for triangles, except the error offset value represents how much the middle 

vertex of the diamond was pushed or pulled from its parent triangles when the diamond 

was created. If the priority value is less than the given tolerance, the diamond is merged. 

This operation releases the middle vertex, and recreates the original two triangles by 

deleting the two child triangles and adjusting the edges of two parents to the outer vertices. 

By performing these two stages each frame, the planet quickly becomes a complex surface 

despite having been initialized as a simple cube, and the surface maintains its excellent 

fidelity as the camera zooms in close to the surface.  Figure 10 shows the results of this 

ROAM implementation as we can observe the detail in a surface mesh from the perspective 

of the main camera, and from the perspective of a third person camera at some distance 

behind that. 

Terrain Generation 

Terrain generation is the responsibility of a set of classes which 

PgPlanetStrategyRandom owns a reference to. It uses the PgPlanetAttributes 

structure to set various parameters on the objects under its control as shown in Figure 11. 



  Progeny – Final Report 

16 

 

 

Figure 11: Noise / Planet Relationship 

As mentioned earlier, terrain generation is accomplished through the use of coherent noise 

functions provided through the external library libnoise. Modules provided by libnoise are 

designed to be chained together in order to generate complex noise based structures. 

Modules generally implement a collection of common functions as shown below. 

 

double GetValue(double X, double Y, double Z) 

Returns the noise value at this point in the noise volume. 

 

void SetSourceModule(int ModuleNumber, Module SourceModule) 

Sets this module’s source module, and the identification number to use for this module. 

 

void SetControlModule(Module Module) 

Some modules require another module to control some kind of behavior such as selecting 

between two source modules. 

 

Progeny extends the module interface in order to generate its own high level modules as 

seen below in Figure 12. These modules are PgTerrainModule, PgPlanetModule, and 

PgCraterModule. Each of these modules uses a collection of libnoise modules in order to 



  Progeny – Final Report 

17 

 

generate a specific type of terrain. Further documentation about libnoise modules can be 

found on the official libnoise website [LIB2007]. 

 

Figure 12: Class Diagram - How Progeny Modules implement the libnoise Module Interface 

PgCraterModule 

The crater module starts with the Voronoi primitive. It then clamps the Voronoi output off 

at a specific level in order to isolate a small number of dark spots which can be used to 

generate craters bowls. These cells are then clamped to a minimum value and the output of 

that is inverted to generate the craters edges. Finally the entire is scaled so that the flat 

area is at zero. This is important so that the crater output can later be added to existing 

terrain. The output of these stages can be seen below in Figure 13. 



  Progeny – Final Report 

18 

 

    

Figure 13:  
(a) Voronoi Cells                         (b) Clamped Cells               (c) Inverted Clamped Edges       (d) Finished Craters 

Initially functionality was added to allow our craters to be less circular and therefore more 

realistic (see Figure 14 below). However since the turbulence operation inherently uses 

three Perlin modules [LIB2007] it was found to be far too resource intensive for our 

application. 

 

Figure 14: Turbulent Craters 

PgTerrainModule 

The terrain module makes use of Perlin and Ridged Multi-fractals (see Figure 15) in order 

to generate the base terrain. The basic continent mask is constructed of low frequency 

Perlin noise which contains multiple octaves. On top of this another layer of Perlin noise is 

added. This is the detail noise; it is a much higher frequency, and much lower amplitude. 

This allows for high level continental detail coupled with very fine details at close zoom 

levels. In order to add mountainous terrain we add a layer of ridged multi-fractals using a 

selector module. The height of the mountain terrain is offset by the water in order to allow 

us to have mountains show up at a reasonable height. 



  Progeny – Final Report 

19 

 

  
Figure 15:  

(a) Perlin Noise                                        (b) Ridged Multi-fractals 

 
PgPlanetModule 

The planet module adds the terrain and crater modules and applies an ocean height which 

flattens areas below a specified point. This gives the impression of a flat ocean surface. 

Coloring the ocean an appropriate color in a PgColorScheme module helps enhance this 

appearance. On planets without blue oceans the effect still generates interesting effects 

which seem to emulate the appearance of distinct lowland areas. 

3.2 Progeny Demo 

Progeny Demo is a sample project used to illustrate the project as well as give an example 

to future users how implement the required interfaces for Progeny.  

3.2.1 User Interface 

In addition to using Source Studio’s Horizon engine for rendering the planet, it has been 

used to create the user interface. Utilities are available to handle controller input and draw 

the GUI. 

3.2.2 Controls 

There are two methods available for a user to interact with Progeny.  A keyboard and 

mouse can be used to control the entire system.  A list of the controls is available in Figure 



  Progeny – Final Report 

20 

 

16 below. Controls are based on control schemes that would be similar to users who play a 

lot of games.  WASD are used to move around and the mouse changes the camera direction. 

 

Figure 16: Progeny Controls 

The users are also able to use an Xbox 360 controller to operate the camera and generate 

new random planets. The user is also able to toggle between wireframe, and reset the 

camera using the Xbox controller (see Figure 17). 



  Progeny – Final Report 

21 

 

 

Figure 17: Progeny Xbox Controls 

 
3.2.3 Notifications and overlays 

During the development of the project, it was decided that a heads-up display (HUD) 

should be created to display information to the user, as well as to display debug 

information.  The HUD that was created consists of two parts. The first part is the 

notification pop-up, pictured below in Figure 18. 

 

Figure 18: Notification Pop-up 



  Progeny – Final Report 

22 

 

 

The second piece of the HUD was the information bar, as seen in Figure 19.  This was used 

internally as a debug tool to display information while we were debugging.  As far as the 

user is concerned, the display bar shows only the triangle count and the vertex count.  This 

was used to illustrate how the ROAM algorithm was functioning in real-time. 

 

Figure 19: Information Bar  

3.2.4 Customizing planets 

When a user wants to customize the planet that they are viewing and exploring, they can 

open the planet creation menu (seen in Figure 20).  From this menu the user is able to 

customize a number of parameters of a planet. The user is able to choose the radius, the 

ocean level, the continent frequency, mountain frequency, whether the planet has craters 

and the color scheme of the planet. Once these parameters have been selected, the user can 

then select the seed for the noise functions.  



  Progeny – Final Report 

23 

 

 

 

Figure 20: Customization Menu 

3.2.5 Camera System 

The ProgenyDemo project contains a camera system which allows the user to quickly and 

conveniently view the procedurally generated art assets. This functionality is vital given 

the nature of the algorithms being written, as it allows for a quick and highly effective 

“visual smoke-test” of the algorithms. Initially, an orbital camera system was constructed 

which allowed viewing of the generated planets in a spherical coordinate system. 

Eventually, however, the ability to fly along planet surfaces became a requirement. Thus, a 

6-degree of freedom free-look camera system was also created. A simplified class diagram 

illustrating the design of the camera system is presented below. 



  Progeny – Final Report 

24 

 

 

Figure 21: Simplified Camera System Class Diagram 

 

As can be seen in Figure 21 the resulting system is a textbook example of the state pattern 

in action. The view is able to change its behavior at run time by switching state via the 

creation of a CameraSystem child class. This is advantageous as it allows for the seamless 

transition of viewing context on the fly, a desired feature of the camera system. 

The ExtendedCamera class present in the system wraps the Horizon provided Camera 

and extends is functionality by allowing for advanced movement effects. At the moment an 

inertial movement effect is implemented using a simple linear equation which smooth’s 

displacement of the camera. It does this by having the movement occurs over several 

frames instead of instantly (see Equation 1). Additionally, ExtendedCamera could 

support a wide variety of movement effects; they need only be implemented as 

replacements for the update function in the class (if a wide variety of movement effects is 

desired the strategy pattern could also be employed). 



  Progeny – Final Report 

25 

 

  
  
  

  

  
  
  
  

  
  
  
                 

 
Equation 1: Inertial Camera Movement 

 
The OrbitalCameraSystem provides a convenient way to view generated geometries. It 

contains a representation of camera position in a spherical coordinate system and then 

converts that representation to a three-space Cartesian representation to allow 

parameterization of the calls to ExtendedCamera. 

The FreelookCameraSystem provides full control of translation and reorientation in 

three-dimensional space. It accomplishes reorientation via the use of quaternions, a 

mathematical construct which are useful for handling orientations in three dimensions. 

 FreelookCamera handles the reorientation and translation behaviors but delegates the 

view matrix construction and storage responsibilities to the ExtendedCamera class. 

4.0 Final Project Schedule 
Due to the inherent volatility of software development, it has been agreed that the waterfall 

model of software development is rarely effective. As a result, the team opted to use a 

modified version of the Scrum Agile Development process. 

4.1 Scrum 

The remainder of the project organization section assumes to reader has some familiarity 

with the Scrum process for Agile project management. A succinct video describing the 

process helps to illustrate the basic concepts [HAM2008], while a more in depth guide may 

be helpful in clarifying some finer points [SCPR2010]. 

 

 



  Progeny – Final Report 

26 

 

4.1.1 Term Three - Ceres Release 

Goals 

The goal for this release was to complete the ROAM implementation, terrain generation 

system and demo application such that our project was ready to be demonstrated at IEEE 

senior project night.  

The sprints completed during this release along with their corresponding start and end 

dates are shown in Figure 22. 

 

Figure 22: Sprint Breakdown 

Release Retrospective 

This release went as planned without any major stumbling points. We were able to reach 

the goals we had in mind for the senior demo night in addition to a couple of “nice to have” 

stretch goals. The team is quite pleased with the state of the project at the end of this 

release. The stories which were taken on during the six sprints of this release are presented 

below Table 1- Table 6. 

  



  Progeny – Final Report 

27 

 

Table 1: Sprint Nine Completed Stories 

Title Priority 

Progeny can Instantiate and render PgROAMPlanet as a Cube [ROAM phase 0.5] High 

The user can switch between camera modes via keyboard input High 

 

Table 2: Sprint Ten Completed Stories 

Title Priority 

The Split operation of the ROAM system works to divide cube into sphere given a max triangle 

count [ROAM phase 1] High 

The ROAM system has support for Splitting and Merging triangles to stay at the max triangle 

count [ROAM phase 2] High 

The midterm Progress Report must be completed High 

 

Table 3: Sprint Eleven Completed Stories 

Title Priority 

The Free-look camera system must support the reorientation of the camera object via mouse 

input [via Quaternions] High 

The ROAM system is parameterized by the view frustum for the purposes of intelligent 

splitting of triangles [ROAM phase 3] High 



  Progeny – Final Report 

28 

 

An abstraction layer must be created between libnoise and Progeny High 

Graphical overlays must be made which indicate Frames Per Second, # of Triangles, Max 

Triangles Medium 

 

Table 4: Sprint Twelve Completed Stories 

Title Priority 

User has control of the master seed value High 

The user must be able to control the speed of camera movement High 

Vertex coloring must be applied such that the generated planet has an earth like gradient High 

Terrain generation module must be completed for terrestrial planets High 

We need to be able to properly calculate the normal of the vertices for lighting purposes Medium 

 

Table 5: Sprint Thirteen Completed Stories 

Title Priority 

A GUI must be created to accept parameterization of the ROAM planet High 

Some optimizations must be implemented which improve performance and reduce popping 
for the ROAM system [ROAM phase 4] 

Medium 

Implement linear interpolation between orientations when switching between free-look and 
orbital camera systems 

Medium 



  Progeny – Final Report 

29 

 

libnoise must be used to produce more complex terrain using multi-fractals Low 

Optimizations need to be completed for the terrain module Low 

 

Table 6: Sprint Fourteen Completed Stories 

Title Priority 

A demo station must be constructed for displaying the project during IEEE night High 

The Final Project Report must be completed High 

The project presentation must be created and rehearsed High 

Tweaking of control scheme based on user feedback High 

Graphical overlays must be created which indicate the control scheme, and current camera 
movement speed 

Medium 

Gamepad Support! Medium 

 

4.2 Project Management Post Mortem 

The management philosophy of Project Progeny has undergone some significant changes 

since the launch of the project. Our original process was much more constrained and while 

it was in theory an agile process, it introduced significant overhead for our team size. We 

have decided to cut activities that produced significant overhead and didn’t seem to 

provide significant advantages for their cost. While our team believes in the main 

philosophies of Scrum we believe that our team size and working schedule warrants a 

lighter weight process. 

Another important aspect of our design process has been our change of direction regarding 

our development goals. Although we have adjusted our design process, we have always 



  Progeny – Final Report 

30 

 

tried to maintain an agile mindset. In the world of software development the initially 

purposed solution often overlooks vitally important details, as such it is wise to allow 

information acquired during the construction process to feedback into itself. 

This is especially true of a project like Progeny; where we have very little previous 

experience with some of the main techniques and Libraries in use. Therefore, it has often 

been difficult to make accurate long term projections. Focusing on concrete short term 

goals has allowed us to avoid the pitfalls of shoehorning an inappropriate solution when 

better alternatives have presented themselves. 

4.2.1 How the Scrum approach has evolved 

As the Scrum process was applied over the duration of the project, the retrospective 

process unveiled some inefficiency with the formal method as it is defined for an 

environment with multiple teams. As a result, some adjustments to the way Scrum was 

being applied to the project were made: 

 The amount of formal granular planning performed at the beginning of each sprint 

has been reduced. With a small team of only four people, it was found that there was 

not much value added as there was already a good understanding of the tasks 

required to bring stories to completion. 

 The amount of detailed time estimation being done was reduced. The team is not 

working on a fixed schedule week to week; therefore there is less of a need to 

perform detailed time estimations for story tasks. 

 Originally sprints ended on Sundays.  As meetings with the supervisor and client 

were held every Wednesday, it was decided that a more natural time to end sprints 

would be this day. 

Overall the Scrum approach was a unanimous success and using it helped ensure all team 

members were on the same page heading into each sprint. Additionally, it allowed all 

members of the team to be aware of, and in agreement on, the direction of the project. 



  Progeny – Final Report 

31 

 

4.3 Success and Challenges 

When implementing Progeny, the team encountered a number of challenges to be 

overcome.  

As it was always an important goal to maintain Progeny as a system completely 

independent of platform and rendering engine, the team had to learn a great deal about 

graphics interfaces and data structures to implement the output of the ROAM algorithm in 

a reusable and portable way. The Horizon engine was initially restricted in that it did not 

offer a rendering method for immediate mode rendering, but consultation with Source 

Studio revealed that this was an ideal choice for ROAM rendering, and the method was 

complete in a newer branch of the engine code. When it was brought over to the team’s 

working branch of Horizon, the implementation of HorizonPgRenderer was quickly 

completed. 

As ROAM is a complex algorithm, however, there were several instances where there arose 

bugs that took significant time to find and fix. For several weeks there was a blocking issue 

where zooming close to the planet would cause a stability problem where triangles would 

begin to consume other triangles, destroying the surface of the planet until the camera 

zoomed out enough and the problem triangles would merge and cause the planet to re-

stabilize. As the number of triangles was going up in our status window, in addition to the 

graphical glitches, we wrongfully assumed that it was being caused by a singular problem 

in our ROAM implementation that was causing vertices to be misplaced. After a great deal 

of debugging sessions, it was discovered that the issue was caused by three underlying 

problems: 

1. As there is a pool of 2^16 vertices available for use by the PgROAMPlanet, we 

indexed the vertices with the type “unsigned short”. This gives us enough space to 

access every vertex. However, when we ask the planet to render, each triangle is 

given an array of unsigned shorts to append its three vertex indices into, including 

an unsigned short as the current index into this array. This caused a visual stability 



  Progeny – Final Report 

32 

 

problem when we hit a number of triangles 2^16/3 ~ 21845 since each triangle is 

writing three unsigned shorts into the array, the unsigned short index would 

overflow at this point and the first triangles in the array would have their edge data 

overwritten. This caused the random visual incoherence of the planet structure. 

2. The initial eight vertices that form the cube basis of the planet were being 

positioned at the planet radius instead of at the position determined by the planet’s 

associated strategy. This could sometimes result in severe surface discontinuities at 

certain levels, triggering an infinite split operation. 

3. An optimization that was introduced to the ROAM split method where the error 

offset value was taken from one of the parent triangles and stored in the newly 

created diamond structure without recalculating it. However, this pull was being 

done after the parent triangles had their edges adjusted and a new error offset value 

was calculated based on the new longest edge. This resulted in error values that 

would not converge towards 0 as more splits were doing, also triggering infinite 

split operations. 

Having these three issues in parallel was caused by the difficulty in an iterative 

implementation of ROAM (i.e. without doing most of it in one large attempt, it is hard to test 

piece-wise functionality), and assuming the issue was caused by a singular problem lead to 

great difficulty in debugging.  

While procedural generation methods allow for simplistic interfaces to the generation of 

complex graphical designs, the implementation of such interfaces poses a number of 

challenges. One of the biggest challenges is setting up the procedural algorithms so that 

their parameters are easily adjustable, and so that they perform actions which are logical to 

unskilled users. Our team experimented with a couple of different planetary models before 

settling on our final choice. We believe our final choice provides an intuitive interface to the 

generation of fairly believable planetary geographies. 

 



  Progeny – Final Report 

33 

 

During this development process we found that modules such as Perlin noise, turbulence 

and Voronoi noise could result in severe performance penalties. We initially focused on a 

more complicated planetary model in order to make it more adjustable and varied. 

However, we quickly realized that similar results could be achieved with much fewer 

modules, at much greater frame rates. These simplifications only resulted in very minor 

decreases in visual fidelity. We felt that performance was extremely important in our 

project because ultimately it is designed to be integrated into real-time games running on 

consumer level hardware. While our team faced many different challenges we are 

ultimately pleased with the solutions we discovered. 

5.0 Project Budget and Resources 

Most of the tools and research materials used are free or open source. In order to aid in 

research, four copies of the book "Texturing and Modeling: a Procedural Approach" have 

been purchased for forty dollars each. Otherwise, entirely free research sources and tools 

are being used. There are a large variety of tutorials available regarding the subject matter, 

and various ACM and IEEE papers are freely available through Memorial University’s 

library services. The remaining budget details can be seen in Table 7. 

 

  



  Progeny – Final Report 

34 

 

Table 7: Budget details 

Texturing and Modeling: a Procedural Approach 
(research/book) 

$40 x 4 

Visual Studio 10 Pro (IDE) $0 (Free for students) 

Version One (scrum project management tool) $0 (Free Team Edition) 

Direct X SDK $0 (Free) 

Libnoise (noise generation library) $0 (Open Source) 

Tortoise SVN (source control) $0 (Open Source) 

Horizon (game engine) $0 (License Agreement with 
Source Studio) 

Skybox Textures $20 

Demonstration Backboard $32 

Backboard Print $15 

TOTAL $227 

 

6.0 Moving Forward 
There are many directions in which this project could be expanded in the future. Below we 

elaborate on a few that we think would provide reasonable but challenging capstone 

projects. 



  Progeny – Final Report 

35 

 

Our current implementation of Progeny makes very little use of the GPU. This provides us 

with a great deal of portability. However, many of the algorithms used would scale well to 

parallel counterparts which could be run on the GPU. Therefore, writing a portion of the 

project in shaders seems like a logical next step. It’s conceivable that our noise generation 

and terrain paging algorithm could be ported over to the GPU and see considerable 

performance gains at the cost of a modest loss in portability. 

Another aspect which our team was unable to explore due to time constraints was the use 

of a texture paging algorithm. How this would be done on such a dynamic planetary surface 

it an interesting question that would require considerably more research and development 

work. There may be good methods of doing this work within shaders as well, though our 

team has very little experience in that area. Certainly, we have seen examples of procedural 

textures generated within shaders, running at real time speeds. So we know that such 

techniques are at least feasible. Perhaps this is an area that Source Studio would be 

interested in exploring in future projects. 

 

Finally, we believe the power of procedural methods could be made even more apparent 

our demo project had the capability of generating entire solar systems or even explorable 

galaxies of planets. Such a project would have to devise procedural methods for the 

statistical distribution of planets and solar systems. Other planet types could be added to 

our library such as gas giants, and stars could also be procedurally generated. These are 

just a few of the potential future directions our team finds intriguing. 

7.0 Conclusion 

Implementing the design that has been shown in this report allowed us to build a reusable 

C++ library for procedural generation of art assets for games. Focusing our project on the 

generation of large scale planets has allowed us to demonstrate the strengths of procedural 

methods. Our library and demo show how easy it would be to generate a massive universe 

of planets impossible through traditional game development methods. Furthermore, it 



  Progeny – Final Report 

36 

 

demonstrates how complex art assets can be created through very simplistic interfaces, 

enabling unskilled users to create highly realistic and detailed art assets within seconds. 

Such technology could have powerful implications in the fields of user generated content 

and game editing tools. 

  



  Progeny – Final Report 

37 

 

Glossary 
Coherent Noise - A class of noise function whose output is proportional to any change in 

its input. Coherent noise does not contain discontinuities. 

GUI - Graphical User Interface 

HUD - Heads Up Display 

Multi-Fractal - A function that uses primitive fractal functions to build a more complex a 

varied fractal pattern. Perlin noise can be used in functions with itself to generate complex 

multi-fractal patterns. 

Perlin Noise - A form of coherent noise that is often used as a primitive in the generation 

of procedural textures. Developed by Ken Perlin and introduced in his 1985 paper “An 

Image Synthesizer” and later expanded upon in his paper “Improving Noise”. Pure Perlin 

noise produces an effect similar to blurred random noise. 

ROAM (Real-time Optimally Adapting Meshes) - A mesh adapting algorithm introduced 

in this paper “ROAMing Terrain - Real Time Optimally Adapting Meshes”. Designed to 

display dense mesh data where it is needed and simplify mesh structure where it is less 

important. Useful when applied to dense large scale terrain meshes which need to be 

rendered in real-time. 

  

http://delivery.acm.org/10.1145/330000/325247/p287-perlin.pdf?key1=325247&key2=3030207921&coll=DL&dl=ACM&CFID=9010553&CFTOKEN=64811473
http://delivery.acm.org/10.1145/330000/325247/p287-perlin.pdf?key1=325247&key2=3030207921&coll=DL&dl=ACM&CFID=9010553&CFTOKEN=64811473
http://delivery.acm.org/10.1145/570000/566636/p681-perlin.pdf?key1=566636&key2=2460207921&coll=DL&dl=ACM&CFID=9010553&CFTOKEN=64811473
https://graphics.llnl.gov/ROAM/roam.pdf


  Progeny – Final Report 

38 

 

References 
[SPUF2003] Francis Spufford. The Guardian. Masters of their universe. (2003, October 18). Retrieved 

from: http://www.guardian.co.uk/books/2003/oct/18/features.weekend 

[MANN2010] CCP Mannapi. Awesome Looking Planets. (2010, January 19). Retrieved from 

http://www.eveonline.com/devblog.asp?a=blog&bid=724 

[DUCH1997] M. Duchaineau, M. Wolinsky, D.E. Siegeti, M.C. Miller, C. Aldrich, M.B. Mineev-

Weinstein. “ROAMing Terain: Real-Time Optimally Adapting Meshes”. Retrieved from 

https://graphics.llnl.gov/ROAM/roam.pdf (n.d) 

[DAND2008] Christoph Matthias Dandorff. An interactive rendering system for real-scale planets 

combining static with procedural data. (2008, November 7). Retrieved from VTerrain.org: 

http://www.vterrain.org/LOD/spherical.html 

[EBRT2002] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, Steven Worley 

Texturing and Modeling: A Procedural Approach, 3rd Edition. (2003) 

[LIB2007] Jason Bevins. “libnoise: a portable, open-source, coherent noise-generating library for 

C++”. 2007). Retrieved from sourceforge: http://libnoise.sourceforge.net. 

[DAVX2009] Davlex Design. ROAM Planet rendering. (2009, April 3). Retrieved from Ogre Forums: 

http://www.ogre3d.org/forums/viewtopic.php?f=11&t=49849 

[BTR2000] Bryan Turner. Real-Time Dynamic Level of Detail Terrain Rendering with ROAM. (2000, 

April 3). Retrieved from Gamasutra: 

http://www.gamasutra.com/view/feature/3188/realtime_dynamic_level_of_detail_.php 

[ONEIL2001] Sean O'Neil. A Real-Time Procedural Universe, Part Two: Rendering Planetary Bodies. 

(2001, August 10). Retrieved from Gamasutra: 

http://www.gamasutra.com/view/feature/3042/a_realtime_procedural_universe_.php 

[POM2000] Alex Pomeranz. ROAM using Triangle Clusters (RUSTiC). Master’s thesis, University of 

California Davis Computer Sciences Department. (June 2000) 

http://www.guardian.co.uk/books/2003/oct/18/features.weekend
http://www.eveonline.com/devblog.asp?a=blog&bid=724
https://graphics.llnl.gov/ROAM/roam.pdf
http://www.vterrain.org/LOD/spherical.html
http://libnoise.sourceforge.net/
http://www.ogre3d.org/forums/viewtopic.php?f=11&t=49849
http://www.gamasutra.com/view/feature/3188/realtime_dynamic_level_of_detail_.php
http://www.gamasutra.com/view/feature/3042/a_realtime_procedural_universe_.php


  Progeny – Final Report 

39 

 

[HAM2008] (December 09, 2008). SCRUM in Under 10 Minutes. Retrieved May 31, 2010, from You 

Tube: http://www.youtube.com/watch?v=Q5k7a9YEoUI 

[SCPR2010] (2010). Retrieved May 31, 2010, from Scrum Training Institute: 

http://scrumtraininginstitute.com/home/stream_download/scrumprimer 

http://www.youtube.com/watch?v=Q5k7a9YEoUI

